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Use of A Priori Statistics to Minimize Acquisition Time for
RFI Immune Spread Spectrum Systems'
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A theory is given which allows one to obtain the optimum acquisition sweep strategy
of a PN code despreader when the a priori probability density function is not uniform.
This theory has application to psuedo noise spread spectrum systems which could be
utilized in the DSN to combat Radio Frequency Interference (RFI). In a sample case,
when the a priori probability density function is Gaussian, the acquisition time is reduced
by about 41% compared to a “uniform sweep” approach.

l. Introduction

The acquisition circuitry of a despreader (a PN code
acquisition and tracking system) is commonly designed so that
complete passes are made across the code range uncertainty, as
shown in Fig. 1a, during the initial search for the code epoch.
This search, which is commonly implemented by retarding one
half a chip at a time, then integrating and comparing to a
threshold (Fig. 2), continues until the signal is acquired. This
scheme is efficient when the a priori location of the signal in
the uncertainty region has a uniform probability density
function. However, when the a priori density function is
peaked, it is more likely to find the signal in the peaked region
than elsewhere, so the full sweep approach may not be the
best one.

'Portions of this work were performed for the TDRSS Project at TRW
Systems.
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This article is concerned with a method that allows one to
determine the optimum sweep pattern to minimize the
acquisition time, while achieving a required probability of
signal detection, for a given a priori probability density of the
signal location. The calculation is carried out for a Gaussian a
priori signal location probability density function as illustrated
in Fig. 1b. However, the approach is general so that it can be
applied to any given a priori signal location probability density
function.

The basis of this method relies on the fact that any
meaningful statistics (Ref. 1, for example) of acquisition time,
which is the time required to search the code until acquisition,
depends directly upon the number of chips (code symbols) to
be searched. Therefore searching where there is the greatest
likelihood that the signal will be found first reduces the total
number of positions to be searched.



Il. Probability of Detection After N Sweeps

Consider a symmetric search centered at the mean of a
symmetric, unimodal, a priori probability density function as
shown in Fig. 1c for the case of N =3 sweeps. Denote @, as
the probability of acquiring at the end of NV sweeps. Typically
@, would be 0.9 or 0.5, for example. Let L, L,, Ly ..., Ly
denote the lengths (in number of cells) of the code range
uncertainty to be searched during the NV sweeps, and assume
that Ly = Ly_, =...2 L. Let p(x) be the a priori
probability density of the location of the signal. Further, let S,
denote the event that the signal is not detected in any one of
the first i sweeps over regions with lengths L, L,, ..., L,
Also, we shall use the notation S to denote the event that the
signal is not detected with zero sweeps, which is of course a
sure event. It is clear that the conditional probability density
of the signal location x, given that no sweep has yet been
made, is equal simply to the a priori density p(x), i.e.,

p(x1S,) = p(x) (1)

This density is illustrated in Fig. 3a. Suppose no signal is
detected during the first sweep over L, i.e., suppose the event
S, has occurred. The conditional density p(x|S,) is equal to,
by use of Baye’s rule,

p(S, 1P

2
s )

p(xIS)) =

In (2) the conditional (or a posteriori) probability density
p(S,|x), is clearly given by

l—Pd if xeL1
p(S|x) = (3)
1 if x¢Ll

where P, is the probability of detection given the signal is
there. The notations x e L, and x ¢ L, denote the fact that
the location of the signal is within the set L, ornotin L, and
P(S,) is the probability of the event S, :

P(S) =1-P,PL,) )

where P(L ) denotes the probability that the signal location x
is within the set L :

L. /2

‘1
P(L)) =f
~L /2

p (x)dx (5)

Substituting (3), (4) into (2) we thus have

(1-Pp(x)
—I-PdP(Ll) if xel,
p(x1S;) = (6)
P(x) .
IW 1fx¢L1

This conditional density is illustrated in Fig. 3b. It is easy to
show that

fm P(x|S,)dx =

The joint probability density of x and the event S is thus
given by (from Egs. 2 and 6):

(1- P)P(L,)
1-P,P(L,)

1-P(L,)
1-P,P(L,)

(7

(I—Pd)p(x) ifxel,
p(x. 5,)=p(xlS,)P(S, ) = (8)
p(x) ifx ¢l

since P(S,) = 1 - P,P(L,). The joint probability of S, and
x € L is given by

L,/2 ‘
P(L,,S,) =f px, S)dx=(1-P)P(L) (9)

L2

Since L, = L;, the joint probability of S, and xe
(L, - L,) is given by (from Eq. 8)

-L /2 Lyl2
p(L,-L,S;)= P(x, S )dx + f P(x, S, )dx
L./

~L,/2 L, /2
= P(LZ_LI) = P(L))- P(L)) (10)
Further, let P, i = 1, 2, ..., N denote, respectively, the
probabilities that the signal is acquired during the it? sweep,
but not in the first, second, ..., (i- D" sweeps. If we can

compute these P;’s, then Q,, is clearly equal to the sum

Qy =P tP, P+ 4P, (11)
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It is clear that the probability of acquiring in the first sweep is
given by

P, =P P(L) (12)

The probability P, by definition, then, is equal to the joint
probability

P, =Prob [acq. in second sweep, fail to acq. in first sweep]
=P,P(L,~L,.S)+P,P(L,S))

=P, [P(L)- P(L )] +P(L-P)P(L,) (13)
In computing (13) we have used Egs. (9) and (10).

Following identical arguments one obtains the joint prob-
ability density

(l-Pd)zp(x) if xel,
px, S,) = (1-P)HPk) if xe(l,- L))
p(x) if x¢L, (14)

It is then easy to compute the a posteriori probability
density function after two sweeps:

(1-P,)Yp(x)
T X €

P(S,) 1
(1-Pyp(x)
p(xlSz) = TA%) x¢L,, xel,
p(x)
P(S,) x¢L2 (15)

This density function is shown in Fig. 3c. From (14) one
obtains, for Ly =2 L, 2L,

P

= P P(L,~ L, S,)+P P(L, - L,S,)+P,P(L.5,)

P,IP(L,)- P(L,)] +P,(1- P) [P(L,)- P(L )]

+P,(1-P ) P(L,) (16)
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In general,Pl. can be written fori=1,2,...,Nas:

H

P=P, >, (1-P) "P(L,)-PL, D]  (7)
n=1

with P(L,) = 0. When (17) is substituted into (11) we obtain,
after some simple algebra: ‘

N P(Ly)

N
Qy =Y P=P (1-P)N —_— (18)
N 2; @ kz; (1- P

The fact that we can write P; in the form of Eq. (17) is
intuitively clear. We can argue through the case of P, as given
in (16). The region of search during the third sweep can be
divided into three nonoverlapping regions =Ly - L,, L, - L,
and L. By the time the third sweep is initiated, the region L,
has already been searched twice. Hence the joint probability
that signal is detected in this region during the third sweep but
not during the first two sweeps is P,(1 - P;)?P(L ). Similarly,
the probability that signal is detected in the region L, - L,
during the third sweep, but not during the first two sweeps, is
P,(1-Py) [P(L,) - P(L,)], since this region has only been
searched once before the initiation of the third sweep. The
region L - L, has not yet been searched, and thus the
probability of detecting the signal in this region is simply
P,IP(L;) - P(L,)]. P; is the probability of detecting the
signal in any one of these three nonoverlapping regions during
the third sweep, and is thus equal to the sum of these three
terms, which is precisely the result of (15).

lll. Optimum Symmetric Search Strategy

Suppose we design a search algorithm with search lengths
Ly, Ly, ..., Ly in the first NV sweeps, and suppose the
resulting probability of signal acquisition in these & sweeps is
Qy» which is computed in Section I as a function of the a
priori probability density of the signal location, the number of
sweeps 2V, and the search lengths. Denote the acquisition time
that is required for the probability of signal acquisition to
reach Qy by Ty, For example, T}, 4 is the time required to
arrive at a Oy of 0.9. The basis of the following optimization
procedure is that, regardless the actual value of O, the
acquisition time TQN is proportional to the number of chips
searched, which is proportional to the total search sweep
length

2 L

N
i=1



Therefore our problem becomes: Determine the optimum
search lengths L,, L,, ... Ly so that Qp equals the desired
acquisition probability and

N
Ly =2 L,

=1

is minimized, thereby minimizing our acquisition time. Our
method of solution is to use the LaGrange Multiplier method.
Let

N N
F=P 3 PLYI-PYNF-23 L, (19)
k=1 k=1

where A is the unknown LaGrange Multiplier. Up to this point
the theory is quite general, the only requirement being that
the a priori density be unimodal and symmetric and that P(L, )
be differentiable. Since this problem was motivated by the
desire to improve acquisition time for the spread spectrum
receivers and since a reasonable estimate for the a priori
location of the signal is Gaussian, we shall illustrate the theory
by assuming that the a priori density function is Gaussian.
Now with this assumption we have

L/ -2 L,
P(L) = 2] exp <—> dt =erf (20)
! o V210 20° 2120

Differentiating, we obtain

dP(L)
oF _ _p Vi
T A+P (1P vy 0 (21)
1
Since
aP(L,) 1 L?
— =——c¢exp |- (22)
aLl. 2n0 . 8g?

we can solve (21) to obtain

(23)

where

(24

[ =— (25)

Substituting for /; (the normalized chip search numbers)
back into the equation for Q, allows us in principle to solve
for A

N
Oy =25 25 (1= B
k=1

X

NENY N S 2
f exp (~ 7) dt (26)

0 AV, 27

This equation appears nearly impossible to solve analy-
tically; however it can be solved simply on a digital computer
by trial and error, picking A" so that Q, equals the desired
probability. This must be done for all V; of course in practice
a few values of N will be sufficient. Before we discuss the
results of the computer solutions let us consider the improve-
ment over an unoptimized sweep.

IV. Uniform A Priori Density Sweep Strategy

The usual strategy for sweeping to obtain acquisition is to
start at the end of the uncertainty region, where the range
delay is minimum, and then retard the range in increments of
typically one-half chip. By sweeping from the minimum delay
to the maximum delay the chances of acquiring a multipath
signal are diminished. If the probability of detection, given
that the received code and the reference code are aligned, is
given by P, and if the a priori probability density function is
uniformly distributed, then the cumulative probability of
acquisition is as shown in Fig. 4. If, for example, a probability
of 0.5 is chosen as the desired probability of acquisition, then
the curve could be read off of the abscissa and the associated
time, denoted by T, ¢, would be the time it takes to acquire
with a probability of 0.5.

A measure of the improvement of the optimized scheme
over the uniform sweep scheme can be measured as follows.
Denote TY as the time to acquire with a probability of Q using
the uniform sweep approach. Next, let Tg denote the time to
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acquire with the optimized sweep. Then the improvement
factor of the optimized sweep over the uniform sweep is given
by

(27

‘
H

NN

'QQLQQ

The acquisition time is then TY r;! = TQO . Clearly ro=1
since unity is achieved with the uniform sweep strategy, and
therefore the method never increases acquisition time. Our
result is for Q = 0.5 as a representative case.

V. Numerical Results

As discussed in Section III, to obtain the optimum sweep
lengths we have to first solve for X" from (26), from which the
optimum sweep lengths are given, fori=1,2,...,N, by

Li=2\/2— o\/ln%—iln(l-]’d) (28)

As evident from (28), the solution of ' must satisfy the
condition:

L m@-r)>0 (29)

In )\I

in order for L; to be meaningful. Thus it is convenient to
define the left-hand side of (29) to be of the form

]n;};-ln(l—Pd)Eex 30)

so that instead of solving (26) for " we can solve for the root
of the following equation:

N
fy =P, 3 (1-pPYVE
k=1~

Xerf\/ex-(k-l)ln(l—Pd)—QN (31)
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which can be obtained numerically by the Newton’s iterative
solution, computing successive iterations according to

ey
X1 T %k _f'(x ) (32)
k

where the derivative of f(x) can be evaluated from (31) to be

x=[eX~(k-1) tn (1-P )]
e

Vafe® - (k- 1) In(1- Pl

N
=P, 3 (A-PYNK
k=1

(33)

Before we illustrate the procedure by numerical example a
discussion on the choice of N is in order. First we note that in
order for a given N to give finite optimum sweep lengths, N
must satisfy

N
0y <P, Y (1-P)V K (34)
k=1

since the right-hand side of (34) is the probability of signal
acquisition with infinite sweep lengths (i.e., for the case
x = 29). Next, an upper bound on N can also be given by noting
the fact that the smallest value of x is -oo, so that N must
satisfy, from (31),

N
/ 1
_ N~k _
0, P, k§_1: (1-P)V" erf  fk-1)1n 7

Equations (34) and (35) give lower and upper bounds of N,
for given values of P, and Q,, within which optimum
solutions of sweep lengths are feasible. The following examples
illustrate the results obtained by this optimum search tech-
nique as compared to the uniform search algorithm.

(35)

Example 1

Suppose P, = 0.25 and the desired Qp = 0.5. The admis-
sible number of sweeps NV for this case is 3 and 4. The sweep
lengths in terms of o (standard deviation of the signal location
probability density) are shown in Table 1. Also shown in
Table 1 is the ratio between the uniform search acquisition



time and the acquisition time using this optimum procedure.
The search region in the uniform sweeps is assumed to be +30.
The four-sweep search gives an improvement ratio of 1.73 over
the uniform sweep search algorithm, i.e., a reduction acquisi-
tion time of 41%.

Example 2

Suppose P; = 0.5 and Q = 0.9. It is found that only N =4
or N=15 are admissible since solutions do not exist for all
other V. Table 2 gives the sweep lengths and the corresponding
improvement ratios over uniform searches.

As illustrated by these two examples the improvement
factor of this optimum search strategy over the uniform search
varies according to Py, @ and V. Nevertheless, the improve-
ment factor is always = 1.

VI. Conclusions

We have presented a method that can be used to optimize
(minimize) the acquisition time for a PN-type spread spectrum
system when the a priori probability density function is not
uniform. Specifically we have calculated, for an assumed a
priori Gaussian density function, that, when the 0.5 prob-
ability acquisition time was used as a measure, the acquisition
time was reduced by 40% for a cell detection probability of
0.25 when three sweeps were used. For the same parameters
and with four sweeps the acquisition time was reduced by
41%. When the acquisition time probability was set to 0.9
instead of 0.5 the reduction was 25% of the uniform sweep
time.

This technique has application to the DSN if psuedo-noise
spread spectrum systems are utilized to combat RFI.
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Table 1. Py = 0.25, Qq = 0.5

Opt. search with

Opt. search with

3 sweeps 4 sweeps
Li/a 2.54 1.19
2.96 1.93
3.33 2.46
2.89
Improvement 1.66 1.73

ratio over uniform
search

Table 2. Py = 0.5, Qy = 0.9

Opt. search with

Opt. search with

4 sweeps S sweeps
Li/o 2.63 0.56
3.53 242
4.24 3.38
4.85 4.12
4.74
Improvement 1.34 1.34

ratio over uniform
search
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Fig. 1. A priori signal location and search strategies
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Fig. 2. Typical simplified fixed dwell time acquisition system
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c. A POSTERIORI PROBABILITY DENSITY FUNCTION AFTER TWO SWEEPS
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Fig. 3. Evolution of the a priori density function
P(T)
T, = ONE FULL SWEEP TIME (60)
2
P - P T—
R
P, +—
T
T 21 37
s H s

Fig. 4. Cumulative probability of acquiring in time T for the
uniform sweep scheme
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